Overview of CMS DAQ Upgrades

Remigius K Mommsen Fermilab

on behalf of the CMS DAQ group

Sergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

Contents

ergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

The current DAQ system for run 2

DAQ for after LS2 (run 3)

Ideas for Phase II

- TCDS-DAQ hub
- High performance event-builder node
- Event-builder architectures
- High-level trigger challenges
- Data scouting at 40 MHz

CMS Data Acquisition System

Detector front-end (custom electronics)

Front-End Readout Optical Link (FEROL)

Data Concentrator switches

Up to 108 Readout Units (RUs)

Event Builder switch

73 Builder Units (BUs)

Filter Units (FUs)

~22k cores in ~940 boxes

Storage and Transfer System

350 TB Lustre file system

- ~700 front-end drivers (FEDs)
- 0.1 8 kB fragments at 100 kHz (1.2 MB event size)
- Custom protocol from FEDs
- Optical 10 GbE TCP/IP
- Data to Surface over ~200m
- Aggregate into 40 GbE links
- Combine FEROL fragments into super-fragment
- Buffer fragments
- Infiniband FDR 56 Gbps CLOS network
- Event building & temporary recording to RAM disk
- Run HLT selection using files from RAM disk
- Select O(1%) of the events for permanent storage
- Merge output files from filter unit
- Transfer files to tier 0 or online consumers at pt.5

Data Concentrator

Front-End Readout Optical Link (FEROL)

- Legacy input via Slink / FRL
- Optical up to 10 Gb/s from new μTCA crate via AMC13

Data to surface

- Simplified TCP protocol over 10 GbE
- 1-18 FEDs merged into 40 Gbit Ethernet at switch level
- Fat-tree architecture interconnects any FEROL to any RU at full bandwidth

Each FED has one TCP stream

- Readout Unit (RU) splits stream into FED fragments
- Checks FED fragments for consistency and buffers them

FEROL40 under development

- μTCA standard (without legacy FRL board)
- 4x10 Gbps optical input and 40 GbE output

Event Builder

InfiniBand - most cost-effective solution

- Reliability in hardware at link level (no heavy software stack)
- Credit-based flow control (switches do not need to buffer)
- Easy to construct a large network from smaller switches

Event Builder Performance

- Avoid high rate of small messages
- Avoid copying data
- Parallelize the work
- Bind to CPU cores and memory (NUMA)
- Tune Linux TCP stack for maximum performance
- Use custom IB routing taking into account the event-building traffic pattern

Sergio Cittolin © 2009-2016 CERN

File-Based Filter Farm (F3)

Sergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

Each builder unit has 12 or 16 filter units

- Static mapping depending on machine generation
- Filter units mount RAM disk on BU via NFSv4
- Filter units pick next available file to process

HLT selection uses standard CMSSW jobs

- Standalone process independent from online data-acquisition framework
- DAQ specific plug-ins for file discovery & monitoring
- Each filter unit runs several CMSSW instances
- Each CMSSW instance uses 4 threads
- New processes are started for each run
- Selected events are written to local files
- Files are copied back to output disk on the BU
- Processes exit once the last file of the run has been processed

	Dell C6220	Megware S2600KP	Action S2600KP
CPU (2x)	E5-2670 (sandy bridge)	E5-2680v3 (haswell)	E5-2680v4 (broadwell)
Cores	16	24	28
RAM	32 GB	64 GB	64 GB
HS06/ node	350	538	659
#nodes	256	360	324
#cores	4096	8640	9072

Total: ~22k cores on 940 motherboards with ~500 kHS06

Storage and Transfer System

Sergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

File-Based Filter Farm produces output files

- 940 FU nodes create their own files
 - One file for each of the ~25 different output and monitoring streams
 - A new file for each luminosity section (~23s)
- To be merged into 1 file per stream and luminosity section in a central place

Files merged into a global file system (Lustre) on a storage system with 350 TB

- Merger process on BU reads data from the local output disk
- Event-data files are concurrently written into a single file on the global file system
- Monitoring data (histograms or scaler data) are aggregated first per BU and then on the global file system

Transfer system distributes the merged files

- Transferred to tier 0 for offline processing
- Copied to local consumers at pt.5 for data-quality monitoring, event display & fast calibration
- Monitoring data (HLT rates and event counts) are inserted into DB

108 x 40 GbE

⋈ 216 x IB 56 Gbp

Lustre Filesystem

Lustre

- 1 Metadata Service (MDS)
- 2 Object Storage Services (OSS)
- Added 3rd OSS yielding 50% more throughput

NetApp E-Series

- 1 TB for Metadata (MDS/MDT)
- 240 TB raw space per OSS
- RAID 6 systems
- Fully redundant
- Connected over IB and 40 GbE

Experience

- Careful tuning to get full performance
- Sensible to network instabilities
- No data loss

Online Cloud

HLT computing power similar to all CMS tier 1 sites combined

 Profit from CPU power outside of physics-data taking for offline computing workflows

Cloud overlay acting as tier 2 site

- Virtual machines using OpenStack Grizzly
- No local data storage (retrieved from CERN)
- Started and stopped based on LHC beam states (257 days in 2016)
- Retired HLT nodes permanently available for cloud
- Average 10k cores across year

Challenges

- Quickly start 800-1000 of virtual machines simultaneously
- Avoid process timeouts when hibernating VM images for several hours during data taking

Sergio Cittolin © 2009-2016 CERN (License: <u>CC-BY-4.0</u>)

Plans for CMS DAQ

No Radical Change for DAQ3

Requirements about the same as today

Some increase in event size due to pileup & upgraded detectors

DAQ2 h/w will be at end-of-life at end of run 2 in 2019

Need to replace computers and network infrastructure

FEROLs will stay (unless there's a major disaster)

- More systems will switch to μTCA readouts
- Next generation FEROL is still using TCP/IP
- Data-concentrator network will stay on Ethernet

Need to re-evaluate event-builder network

- Will Infiniband still be the most cost effective solution?
- Unlikely that there's a technology which allows to shrink the DAQ system substantially (as for DAQ2)

Take into account lessons to be learned during run 2

Networking for Event-Builder

Ethernet

- Not a reliable network in switched environment
- Speed
 - 40 GbE exists on switch and NIC since ~2012
 - 100 GbE exists but still expensive
 - 400 GbE defined

High-Performance Computing (HPC) Fabrics

- Low-latency, reliable
- Infiniband
 - 4xFDR 56 Gbps and 4xEDR 100 Gbps available
 - 4xHDR 200 Gbps (2017-18)
 - Offload network processing to NIC/switches
- Intel Omni-Path 100 Gbps
 - Integration of fabric port onto the CPU socket (onload)
 - Tight integration with specialized processors (Xeon Phi)

Both technologies have switches with ~50 Tbp

Requirements for Phase II

Sergio Cittolin © 2009-2016 CER (License: CC-BY-4.0

Requirements on DAQ increase by factor ~25

- Feasible from technical point of view
- Likely obtainable within reasonable budget

Same two-level trigger architecture as current system

- L1 hardware trigger: 40 MHz clock driven, custom electronics
- High Level Trigger (HLT): event driven, COTS computing nodes

DAQ readout, network, and storage

- Built with COTS computing, networking and storage equipment
- 10-20 performance improvement over 10 years at fixed costs
- Observed in last decade from DAQ1 (~2007) to DAQ2 (2014)

High Level Trigger with similar reduction factor as present (1/100)

- Large uncertainty from technological progress and physics requirements
- Possibly more cost effective CPU/GPU/co-processor architectures in a decade

	Run 2	HL-LHC (Phase-II)	
Peak Pile Up	50	140	200
Level-1 rate (kHz)	100	500	750
Event size (MB)	1.5	4.5	5.0
HLT accept rate	1	5	7.5
HLT power (MHS06)	0.5	5	11
Storage throughput (GB/s)	3	27	42

CMS Phase-II Detector Readout

Sergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

Sub-det	# links on-/ off-detector	Type (Gbps)	use	Data reduction	Event size (MByte)	#DAQ links (100 Gbps)
Tracker-outer	13 k 2 k	GBT (4 G) GBT (9 G)	DAQ + Trig 20% + 80%	On-det	0.5 - 0.6	100
Tracker-pixel	1 k	IpGBT (9 G)	DAQ	On-det	0.7 - 1.0	200
ECAL-barrel	12 k	GBT (3 G)	streaming	Off-det	1.2	200
HCAL	2 k	GBT (3 G)	streaming	Off-det	0.2	40
HGCAL	9 k	lpGBT(9 G)	streaming?	On-det?	1.2	200
Muons DT	6 k	GBT (3 G)	streaming	Off-det	0.1	20
Muons CSC	1 k	GBT (3 G)	DAQ+Trig 50%+50%	Off-det	0.1	20
Trigger						20
EVB					4.2-4.6	800

CMS DAQ Concept

Sub-detector specific readout

- Frontend to off-detector electronics
- Connection to L1 trigger (if any)

Interface to central DAQ system

- Timing & Control Distribution System (TCDS)
 - Timing, Trigger & Control (TTC)
 - Trigger Throttling System (TTS)
- Common protocol for data readout

Central DAQ system

- FPGA based read-out board (data to surface)
 - Ethernet: Layer 2 ok, but transmission unreliable
 - (reduced) TCP/IP possible in FPGA, but needs memory for buffering
 - HPC fabric is difficult on FPGA
- Event building, HLT & storage using commercial hardware

New TCDS-DAQ Hub

Common interface across detectors

- Between synchronous clock-driven system and asynchronous event driven
- Between custom and COTS networking/computing

Functionality of the current AMC13 & FEROL

- Timing, trigger & control (TTC) & trigger throttling (TTS)
- Data aggregation from leaf cards in crate
 - Backplane fat pipes
 - Dedicated fibre connections (front panel or back adapter)
- Convert to commercial network & protocol
 - Most likely Ethernet with 25 Gbps or 50 Gbps lanes
 - TCP/IP would need fast buffer memory
- Emulation / data generation for testing purposes
- Improved monitoring, e.g. congestion in BE vs DAQ bp
- Full software stack for standalone & cDAQ mode

Full local DAQ system

Planning for TCDS-DAQ Hub

Sergio Cittolin © 2009-2016 CER (License: CC-BY-4.0

First prototype

- Develop the ATCA carrier board
- Reuse existing µTCA h/w as mezzanine boards
 - FEROL40 (DW mezzanine): 4 fat pipes & 40 GbE
 - AMC13 T1+T2 (SW,FH mezzanine)
- FPGA to act as a concentrator/router between streams from leaf cards and mezzanines
 - Both backplane & dedicated links
 - Timing & control via backplane (fat pipe?)
 - Foresee 8 fat pipes to mezzanines
 - Take FPGA which supports 25 Gbps lanes?
- MMC and system-on-a-module
- Firmware & software stack

Target for first version: mid 2018

- DAQ demonstrator
 - At least 2 leaf cards emulating sub detector data
 - COTS network & readout unit PC receiving data
- Aligned with Tracker DTC 1st prototype

Version 2

- Keep existing TCDS-DAQ-Hub v1
- Construct FEROL100 mezzanine
 - Input 8x10 Gbps lanes
 - Output 4x25 Gbps lanes for 100 Gb Ethernet

Version 3

ATCA card without mezzanines

Readout Unit

Commercial PC on surface

- Receiver from synchronous system
 Commercial NIC (Ethernet L2), or custom card
- Data concentrator and temporary buffer
- Protocol converter to event-builder network (Ethernet or HPC interconnect)

CPU power for

- Link protocols
- Event-fragment checks
- Super-fragment building

Memory to buffer O(100) event fragments

Would need O(1000) machines with 100 Gbps I/O

Could be done today, albeit prohibitively expensive

Sergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

Industry Trends — CPU

Sergio Cittolin © 2009-2016 CER

Hybrid CPU-FPGA system

- FPGA offload with OpenCL
- Prototypes for categorization and search (e.g. Google)

On-chip fabric

- Intel OmniPath
- Reliable and scalable 100 Gbps interconnects

Specialized many-core processors (Xeon Phi, GPUs, ...)

- Many cores with wide vector units
- Network fabric will be integrated in the future

Gen4 PCle (~16 GT/s/lane)

IVB+FPGA Software Development Platform

Software Development for Accelerating Workloads using Xeon and coherently attached FPGA in-socket

Processor	Intel® Xeon® E5-26xx v2 Processor	
FPGA Module	Altera Stratix V	
QPI Speed	6.4 GT/s full width (target 8.0 GT/s at full width)	
Memory to FPGA Module	2 channels of DDR3 (up to 64 GB)	
Expansion connector to FPGA Module	PCIe 3.0 x8 lanes - maybe used for direct I/O e.g. Ethernet	
Features	Configuration Agent, Caching Agent,, (optional) Memory Controller	
Software	Accelerator Abstraction Layer (AAL) runtime, drivers, sample applications	

Heterogeneous architecture with homogenous platform support

Industry Trends — Memory

ergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

3D XPoint memory (Intel & Micron)

- Non-volatile memory
- Faster than NAND SSD
- Denser than DRAM

Allows unprecedented addressable storage capacity with low-latency

- Data can be buffered for much longer times than today
- No risk of data loss due to power failures

Readout Processor

Commercial PC on surface

- Receiver from synchronous system
 Commercial NIC (Ethernet L2), or custom card
- Data concentrator and temporary buffer
- Protocol converter to event-builder network (Ethernet or HPC interconnect)

CPU power for

- Link protocols
- Event-fragment checks
- Super-fragment building
- Pattern recognition, preprocessing or fast calibration
- Event classification
- Detector data monitoring

Large, non-volatile memory

- Detector calibration before HLT
- Store data until needed for HLT selection

Sergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

Alternative Event-Builder Architectures

Sergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

Folded event builder

μTCA

FEDs

576 x

10 GbE

108 x 40 GbE

⋈ 216 x IB 56 Gbps

- Same event-builder node used for detector read-out and full event building
- Exploit bi-directional links
- Traffic balancing becomes more challenging
- Higher demand on I/O and memory performance

Data federations & event building on demand

- Each readout unit holds data from pre-defined set of detector
- Data is accessed directly from HLT process through HPC fabric
 - Complete events are built during or after HLT processing
 - Requires support from s/w framework to deal with partial events and longer latencies to access sub-detector data

Co-processor farms

- Specialized processors for feature extraction might be beneficial
- Access data from readout unit and provide information to HLT nodes

ATCA Backend

Data to surface

Readout & Builder Unit

HLT and specialized processors

Storage & Transfer System

High-Level Trigger

Guestimate based on current detector, PU dependence, assuming current algorithms scale

- Possible gain with using L1 Track trigger
- PU = 140 / 200, L1 Rate 500 / 750 kHz:
 ~ 5.0 / 11.0 MHS06
- Compare LHCb: need 3.3 MHS06 in 2021

Existing data center at pt.5 supports 1 MW

Upgrading in place is difficult & expensive

New data center might be required

- New building at pt.5
- Remote data center at Prévessin for all LHC exp.
 - ~4 TB/s over ~10 km
 - Costs for data links might be prohibitive

Assumed perf. increase of server	Exponential 25% / year [WLCG 2014]	Exponential 12.5% / year	Linear 73 HS / year
11 years	12	3.7	2.2
#servers in Q1-27	1431	4562	7860
Total power Q1-27	0.5 MW	1.6 MW	3 MW

Possible Mitigations for HLT

Sergio Cittolin © 2009-2016 CERN

Co-processor farms

- GPU or Xeon Phi for specialized tasks
- Need to study data movement overhead

Hybrid CPU-FPGA system

Use OpenCL to make code portable to normal CPUs

Truly distributed local processing

- Exploiting high-performance fabric
- Container & query programming style leveraging large non-volatile memory

Clustering on GPU Pixel Clustering implemented using a Cellular Automaton Algorithm Each hit is assigned an initial tag Tags are replaced for adjacent clusters

Ends when no more adjacent hits

 Obtain Factor 26 Speed-up running on GPU compared to 1 CPU core

18

Scouting for New Physics

Current scouting technique on HLT

- Signatures with acceptable rates at L1, but without substantial rate reduction at HLT
- Simple analysis on HLT using HLT objects with reduced accuracy (e.g. CaloJets)
- Store minimal information to find interesting features offline

In phase II most detectors provide data for each bunch crossing at 40 MHz

- Track trigger data, all tracks down to Pt>2GeV, |η|<2.4 with high efficiency
- Triggerless streaming of data e.g. for calorimeters

Trigger information could be used for scouting, too!

Scouting at 40 MHz (Emilio Meschi)

Extend scouting technique to L1

- Collect data available at 40 MHz
 - Parasitic DAQ' system w/o backpressure
 - Data with reduced accuracy and/or content
- Look for signatures with too high L1 rate
 - Dedicated scouting processors
 - Analyze with spare HLT power

High-statistics real-time data analysis

- Understand physics limited by L1
- Rapidly attain and monitor best calibration
 of (e.g. L1) quantities that require high statistics
- Calibrations in real time (e.g. fast, accurate MET calibration for HLT)

Opportunity for phase II

- Understand where splitting 40 MHz data is technically possible
- Avoid taking decisions on hardware that will make this impossible
- We do not need to build anything for day 1

Summary

CMS DAQ system for run 2 fully commissioned

- Fulfills functional and performance requirements
- Extensive tuning is needed to take advantage of state-of-the-art technologies
- Ready to integrate new/upgraded sub-detectors in 2017
- Main challenge will be the new FEROL40 hardware

No radical changes for run 3

Evaluate event-building network technology

Ideas being developed for phase II

- Common DAQ-TCDS hub based on ATCA
 - Moves interface to central DAQ into the backend crate
- High performance event-builder node with non-volatile memory
 - Pre-processing and online calibration
 - On-demand event building or remote data access
- Big uncertainty on high-level trigger CPU needs
- 40 MHz scouting for new physics

Sergio Cittolin © 2009-2016 CERN

Questions?

AMC13

- It is not an MCH! It is a 13th AMC in MCH-2 slot
- It distributes LHC clock / timing / controls to AMCs
- It collects DAQ data from AMCs
- It provides standard interface to CMS subdetectors:
 - CMS DAQ via 1-3 optical fibers at 10 Gb/s (64/66b encoded)
 - TTC via 1300nm fiber @ 160Mb/sec biphase mark code

Front-End Readout Optical Link (FEROL)

	FEROL	FEROL40
FPGA	Altera Arria II GX	Altera Arria V GZ
QDR Memory	16 MB	32 MB
DDR Memory	512 MB DDR2	2x 1GB DDR3
Input (SLINKXpress)	2x optical 6 Gbit/s or 1x optical 10 Gbit/s	4x optical 10 Gbit/s
DAQ interface (Ethernet)	1x optical 10 Gbit/s	4x10 Gbit/s or 40 Gbit/s

(License: CC-BY-4.0)

Event Builder Performance

Sergio Cittolin © 2009-2016 CERN

Avoid high rate of small messages

- Request multiple events at the same time
- Pack multiple events into one message

Avoid copying data

μTCA

576 x

10 GbE

108 x 40 GbE

⋈ 216 x IB 56 Gbps

- Operate on pointers to data in receiving buffers
- Copy data directly into RDMA buffers of IB NICs
- Stay in kernel space when writing data

Parallelize the work

- Multiple threads parallelize event handling
- Write events concurrently into multiple files

Bind to CPU cores and memory (NUMA)

- Bind threads & memory structures to cores
- Restrict interrupts from NICs to certain cores
- Tune Linux TCP stack for maximum performance

More information on performance of the CMS Event Builder on poster #116

Use custom IB routing taking into account the event-building traffic pattern

Event Builder

InfiniBand – most cost-effective solution

- Reliability in hardware at link level (no heavy software stack)
- Credit-based flow control (switches do not need to buffer)
- Easy to construct a large network from smaller switches

Event Builder protocol

Sergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

Infiniband CLOS network

Computers

Readout Unit (RU)

- Dell PowerEdge R620
- Dual 8 core Xeon CPU
 E5-2670 0 @ 2.60GHz
- 32 GB of memory

Builder Unit (BU)

- Dell PowerEdge R720
- Dual 8 core Xeon CPU
 E5-2670 0 @ 2.60GHz
- 32+256GB of memory
 (240 GB for Ramdisk on CPU 1)

Sergio Cittolin © 2009-2016 CERN (License: CC-BY-4.0)

Configuration & Control

Data-flow applications based on XDAQ C++ framework

- Reusable building blocks for
 - Hardware access
 - Transport protocols
 - Services
- Dynamic configuration based on XML
- Controlled and browsable with HTTP/SOAP

Run-Control & Monitoring System

- Hierarchical control structure
- Java code running as Tomcat servlets
- React on state machine events
 - Commands from parents
 - Errors from children

File-based filter farm

- Daemons running asynchronously to run boundaries
- Driven by appearance of directories or files

Monitoring & Error reporting

XDAQ services in each application

- Periodically publish monitoring data
- Central logging facilities
- Error reporting

Services to centrally access the data

- Monitoring tools aggregate the data
- Display information for shifters and experts
- Expert system is being commissioned

File-based filter farm uses Elastic Search

- Near real-time indexing of O(40000) JSON files / s
- Instantaneously querying and displays
- Investigating feasibility to migrate monitoring of all DAQ applications to JSON & Elastic Search

